

R R Institute of Technology

An Autonomous Institution under VTU

Approved by AICTE, New Delhi & Government of Karnataka

DEPARTMENT OF BASIC SCIENCE (MATHEMATICS)

EEE STREAM

Course Title:	Calculus, Differential equation & Linear Algebra	Semester	I
Course Code:	BMATE101	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)		Total Marks	100
Teaching Hours/Week (L:T:P: S)	3:1:2:0	Exam Hours	03
Total Hours of Pedagogy	40 hours Theory + 10 to12 Lab slots	Credits	04

Course learning objectives: The goal of the course Calculus, Differential equation & Linear Algebra for Electrical & Electronics Engineering stream is to

- **CLO 1.** Familiarize the importance of calculus associated with one variable and multivariable for Electrical and Electronics engineering.
- **CLO 2.** Analyze Electrical and Electronics engineering problems by applying Ordinary Differential Equations.
- **CLO 3.** Familiarize the important tools in Integral Calculus that are essential in Electrical and Electronics engineering.
- **CLO 4.** Develop the knowledge of Linear Algebra to solve the system of equations.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self–study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students to group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1: Calculus (8 hours)

Introduction to polar coordinates and curvature relating to EC & EE Engineering applications.

Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature – Cartesian and pedal(proofs) Parametric and Polar(without proofs) forms. Problems.

Self-study: Center and circle of curvature, evolutes and involutes.

Applications: Communication signals, Manufacturing of microphones, and Image processing. (RBT Levels: L1, L2 and L3)

Module-2: Series Expansion and Multivariable Calculus (8 hours)

Introduction of series expansion and partial differentiation in EC & EE Engineering applications.

Taylor's and Maclaurin's series expansion for one variable (Statement only) - problems.

Indeterminate forms - L'Hospital's rule (without proof) $(1^{\infty}, 0^{0}, \frac{0}{0})$ -Problems.

Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with single constraint.

Applications: Series expansion in communication signals, Errors and approximations, and vector calculus.

(RBT Levels: L1, L2 and L3)

Module-3: Ordinary Differential Equations (ODEs) of First Order (8 hours)

Introduction to first-order ordinary differential equations pertaining to the applications for EC & EE Engineering.

Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations-integrating factors on $1/N = (\partial M/\partial y - \partial N/\partial x)$ and $1/M = (\partial N/\partial x - \partial M/\partial y)$. L-R & L-C-R circuits problem.

Non-linear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. Problems.

Self-Study: Applications of ODEs, Solvable for x and v.

Applications of ordinary differential equations: Rate of Growth or Decay, Conduction of heat. (RBT Levels: L1, L2 and L3)

Module-4:Integral Calculus(8 hours)

Introduction to Integral Calculus in EC & EE Engineering applications.

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by double integral. Problems.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions (derivation and Problems).

Self-Study: Volume by triple integration, Center of gravity.

Applications: Antenna and wave propagation, Calculation of optimum power in electrical circuits, field theory.

(RBT Levels: L1, L2 and L3)

Module-5: Linear Algebra (8 hours)

Introduction of linear algebra related to EC & EE engineering applications.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and inconsistency and Solution of system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector.

Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications: Network Analysis, Markov Analysis, Critical point of a network system. Optimum solution.

(RBT Levels: L1, L2 and L3).

List of Laboratory experiments (2 hours/week per batch/ batch strength 15)

10 lab sessions + 1 repetition class + 1 Lab Assessment

- **1.** 2D plots for Cartesian and polar curves.
- 2. Finding angle between polar curves, curvature and radius of curvature of a given curve.
- **3.** Finding partial derivatives and Jacobian.
- **4.** Applications to Maxima and Minima of two variables.
- **5.** Solution of first-order ordinary differential equation and plotting the solution curves.
- 6. Program to compute area, volume and centre of gravity
- 7. Evaluation of improper integrals
- 8. Numerical solution of system of linear equations, test for consistency and graphical Representation.
- **9.** Solution of system of linear equations using Gauss-Seidel iteration.
- 10. Compute eigenvalues and eigenvectors and find the largest and smallest eigenvalue by Rayleigh power method.

Suggested software: Mathematica/MatLab /Python/Scilab

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

- 1. Apply the knowledge of calculus to solve problems related to polar curves and learn the notion of partial differentiation to compute rate of change of multivariate functions.
- 2. Analyze the solution of linear and nonlinear ordinary differential equations.
- 3. apply the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing area and volume
- 4. Make use of matrix theory for solving the system of linear equations and compute eigenvalues and eigenvectors.
- 5. familiarize with modern mathematical tools namely MATHEMATICA/MATLAB/ PYTHON/ SCILAB

Course Assessment and Evaluation Details (both CIE and SEE)

Continuous Internal Evaluation: 50 marks							
Theory Assessment Tool	Marks	Reduced marks					
IAT-1	50	15					
IAT-2	50						
Assessment -1	10	10					
Assessment -2(activity based)	10						
Lab Assessment Tool	Marks	Reduced marks					

Conducting Experiment and Laboratory	15(each lab)	15					
Record(10 labs)							
Lab Test	10	10					
Semester End Examination (SEE): 50 marks							
SEE	Marks	Reduced marks					
Course end examination (Answer any one	100	50					
question from each unit – Internal choice)							

Suggested Learning Resources:

Text Books

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna Publishers, 44thEd., 2021.
- 2. **E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10thEd., 2018.
- 3. **David M Burton:** "Elementary Number Theory" Mc Graw Hill, 7th Ed.,2017.

Reference Books

- 4. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 5. **Srimanta Pal & Subodh C.Bhunia**: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.
- 6. **N.P Bali and Manish Goyal**: "A Textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- 7. **C. Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw Hill Book Co., New York, 6th Ed., 2017.
- 8. **Gupta C.B, Sing S.R and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
- 9. **H. K. Dass and Er. Rajnish Verma:** "Higher Engineering Mathematics" S. Chand Publication, 3rd Ed., 2014.
- 10. **James Stewart:** "Calculus" Cengage Publications, 7thEd., 2019.
- 11. **David C Lay:** "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 12. **Gareth Williams:** "Linear Algebra with Applications", Jones Bartlett Publishers Inc., 6th Ed., 2017.
- 13. Gilbert Strang: "Linear Algebra and its Applications", Cengage Publications, 4th Ed. 2022.
- 14. **William Stallings:** "Cryptography and Network Security" Pearson Prentice Hall, 6th Ed., 2013.
- 15. **Kenneth H Rosen:** "Discrete Mathematics and its Applications" McGraw-Hill, 8th Ed. 2019.
- 16. **Ajay Kumar Chaudhuri:** "Introduction to Number Theory" NCBA Publications, 2nd Ed., 2009.
- 17. **Thomas Koshy:** "Elementary Number Theory with Applications" Harcourt Academic Press, 2nd Ed., 2008.

Web links and Video Lectures (e-Resources):

http://nptel.ac.in/courses.php?disciplineID=111

- http://www.class-central.com/subject/math(MOOCs)
- http://academicearth.org/

COs and POs Mapping (Individual teacher has to fill up)

COs							P					
	O											
	S											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1												
CO2												
CO3												
CO4												
CO5												

 $Level \ 3- \ Highly \ Mapped, \ \underline{Level} \ 2-\underline{Mod}erately \ \underline{Mapped}, \ \underline{Level} \ 1-Low \ Mapped, \ Level \ 0- \ Not \ Mapped$